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Abstract Feynman’s sum-over-paths prescription for the Dirac equation in a two dimen-
sional spacetime can be formulated to give an unconventional view of the relationship be-
tween quantization and special relativity. By considering a local rule for the maintenance of
Lorentz covariance in a discrete space, one is able to see the origin of Feynman’s rule and,
taking a continuum limit at the last step, one obtains the Dirac propagator as a manifestation
of special relativity, rather than a formal addition to it. In this route to the Dirac equation,
the path-dependent phase of wavefunctions, relativistic or not, is a direct manifestations of
path-dependent proper time.

Keywords Special relativity - Quantum mechanics - Feynman chessboard

1 Introduction

Minkowski spacetime and quantization are pillars upon which much of modern physics is
built. The former allows us to transplant classical mechanics into a framework that respects
Lorentz covariance. The latter allows us to replace the classical concept of point particle
dynamics with wave propagation. Both concepts inherit assumptions of smoothness and
scale from Newtonian mechanics, modifying them in different ways.

Dirac successfully married the two concepts mathematically in his famous equation. The
physics implicated by the equation is currently interpreted in terms of quantum field theory
with a second application of the idea of quantization. Pursuit of a quantum theory of gravity
would presumably extend this program to include General Relativity but it appears that a
better understanding of the relationship between spacetime and quantum mechanics may be
necessary to make progress.

A possibility, minimally explored in this paper, is that both quantum propagation and
Minkowski spacetime are manifestations of the same thing. If this is the case then the Dirac
equation as usually ‘derived’ represents a marriage of siblings. Its efficacy results from the
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fact that Minkowski spacetime and Dirac quantization share a common origin. Its intran-
sigence with respect to interpretation and further generalization may result from the same
reason. The common cause needs extension rather than the equation itself.

The Feynman chessboard model,' a sum-over-paths route to the Dirac equation, is based
on what has become known as ‘Feynman’s corner rule’. The rule is usually interpreted as
a clever trick that invokes the formal analytic continuation necessary to convert a diffusion
equation to a wave equation. As a result the model is frequently regarded as an adaptation
of Feynman’s sum-over-paths formulation of quantum mechanics to special relativity rather
than the progenitor of the path-integral approach. This note shows that the corner rule ac-
tually has its origin in a local implementation of Lorentz covariance. This suggests that, at
least in two dimensions, special relativity and quantum mechanics share a common origin
that is usually hidden by independent invocations of Minkowski spacetime and quantization.

To emphasize the common origin of Minkowski spacetime and the Dirac equation we
shall adjust the two relativity postulates, allowing us the freedom to imitate a background
spacetime through fine-scale geometry. Rather than have a picture where “Spacetime tells
particles how to move”? we create a local rule that guides the particle, imitating the ef-
fect of an ambient spacetime. The goal here is to formulate the physics before invoking the
continuum limit required by a differential description. In the model we discuss there are
considerable advantages in doing this. The local rule for enforcing Lorentz covariance ulti-
mately removes the formal clothing separating special relativity and quantum propagation.
By the time we have explored the usual consequences of special relativity in light of the
local rule, we find that quantum propagation is a natural feature that is discovered by pay-
ing close attention to path-dependent proper time. In Sect. 2 we state the modified relativity
postulates and introduce a hypothetical particle called an ‘EAPP’ for Euclidean Area Pre-
serving Particle. We discuss the EAPP and how it approximates a conventional particle with
a smooth world line.

In the following section we take EAPPs into the realm of stochastic processes, rediscov-
ering Feynman’s Chessboard model. Here we see that the existence of the path-dependent
proper time, if maintained in the continuum limit, results in the Dirac and Schroedinger
equations. In the last section we summarize the advantages and disadvantages of this model
and suggest directions for further work.

2 Euclidean Area Preserving Particles

In special relativity, the speed of light is a characteristic speed of deep significance. It is
the speed of photons in free space, but it is also ‘known’ to massive particles through the
famous relation to energy E = mc?. In most expositions of special relativity this fact comes
out when one considers conservation of momentum and energy in light of the Lorentz trans-
formation [3-5].

The conventional concept of the world-line of a free particle is not itself imbued with any
information regarding a particle’s mass. Mass is simply a background attribute assigned to a
world-line so that it can correctly model the behaviour of a real particle in connection with

n the interest of simplicity, the chessboard model is often formulated in the absence of a coupling to the
electromagnetic field. This may be included [1], however, since our interest is primarily the corner rule, we
restrict ourselves to the free particle case.

2“Spacetime tells matter how to move. Matter tells spacetime how to curve.” One of J.A. Wheeler’s aphorisms
describing general relativity [2].
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(a) A chain of spacetime areas. (b) The basic repeating unit.

Fig. 1 (a) A particle at rest as a chain of spacetime areas. Here ¢ = 1 and the particle, from the point of
view of measuring its instantaneous speed, can be identified with the right-hand boundary. The sequence
of crossing points and a smooth interpolant between them is the EAPP equivalent of a world line. (b) Two
links in a chain of oriented areas. The orientation arises from a peculiarity of the Minkowski metric that for
example links the (x, ) = (1, 1) to the (—1, 3) event

other particles and forces. However, this picture ultimately clashes with that of quantum
propagation since mass sets the frequency scales of the quantum wave equations. As a result
we shall depart from standard approaches and modify the picture behind world-lines. The
idea is that there should be a simple fine-scale feature of the worldline that distinguishes a
particle’s mass. The feature has to be fine-scale so that on large scales we can revert to the
picture of a smooth worldline informed by an ambient spacetime.

We can do this in a simple way by exploiting Nature’s universal recognition of the speed
of light. We shall require particle worldlines to have instantaneous speeds +c almost every-
where. Average speeds v < ¢ are then generated by employing fine-scale motion that pre-
serves an intrinsic area. As variants of the usual relativity postulates we propose:

1. The laws of physics are identical in all inertial frames on large scales.
2. All material particles move with speed ¢ almost everywhere.

We have weakened the first postulate to allow flexibility with regard to scale. The strength-
ened second postulate forces a fine scale motion on massive particles. In a two dimen-
sional spacetime the postulates force particle trajectories to have a zig-zag appearance as
in Fig. 1(a).

For reasons that will become clear, we shall think of such paths as occurring in pairs that
form a chain of oriented spacetime areas. The orientation of these areas is a local mecha-
nism for enforcing the Minkowski metric that would appear in a conventional approach and
must appear here on large scales. In the Minkowski metric, spacetime events that may be
connected by a light-like path are equivalent in the sense that the metric distance between
them is zero. In Fig. 1(b) we see that the spacetime point (x, ) = (1, 1) is on the same null
geodesic as the point (x, 1) = (—1, 3). It is as if the space coordinates are interchanged from
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one area to the other. This feature is accounted for in an EAPP by orienting the areas of
the two successive links. If the lower area is oriented positively according to the right-hand
rule, the upper area is oriented negatively by the same rule if we consider the blue path from
(0,0) to (0,4) to be directed as in the figure with the red path inheriting the appropriate
direction to orient the two areas.

By analogy with worldlines we call the sequence of areas world-chains, the figure-of-
eight pictured in Fig. 1(b) providing the basic repeated unit. The EAPP pictured in Fig. 1
can be thought of as an approximation to a massive particle at rest. The ubiquitous presence
of c is facilitated by the fact that each link in the chain has boundaries with slope £c. The
‘at rest’ feature is a manifestation of the fact that if we construct a linear interpolation of
the crossing points of the chain, the result is the conventional world line of a particle at rest.
The qualification of ‘large scales’ in our first postulate means scales much larger than the
distance between crossing points of the chain. To give an idea of scale in the figure, if the
EAPP is to mimic an electron, the time interval between crossing points is of the order of
10722 seconds and the ‘width’ of the chain is of the order of 10~!? centimetres, both scales
well below the effective limits of the classical behaviour of the electron. For simplicity we
employ the same unit of measurement for both space and time, absorbing c into the ¢ variable
so light-like paths have slope =1 on spacetime diagrams and massive particles have average
velocities —1 <v < 1.

We want the EAPP to respect Lorentz covariance and it is not too difficult to see how
we can do this using Euclidian areas. Let us assume that if we observe the EAPP in Fig. 1
from an inertial frame moving with respect to the lab frame with velocity —wv, it will look
just like a particle moving with velocity 4+v on the same spacetime diagram. The fact that
an EAPP has velocity +v means that the interpolant connecting the chain of crossing points
will be a straight line with slope Ax /At = v. To be in accord with the second postulate the
boundaries of the links must still have slope =c. Furthermore, the first crossing point that
was located at, say (x,?) = (0, fy) in the lab frame must be mapped onto (x,t) = (x’, ')
where 12 — x> = 1.

To see this, note from the right side of Fig. 4 that the area of the first link in the lab frame
is

Ap=13/2. (1)

The area of the same link in the moving frame is
A =2tpt;, wheret; =t —tg. 2)

If we require the areas to be the same in both frames then A’ = A so

13 = dgty. 3)
Now
' =tg+1
, , 4
X =tg — 1ty =0t
SO

1
tgr = E(t'—i—x/)
(&)
L,
tLZE(l —X).
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(a) Three EAPPs and oriented areas. (b) Clocks and corners.

Fig.2 (a) A few EAPPs aligned at the origin. The ensemble of these world-chains representing free particles
partitions spacetime into areas of opposite orientation. (b) The enumerative paths of an EAPP are such that
the oriented paths provide a ‘digital watch’ that ticks with each corner in the path. This provides us with
a convenient way of measuring proper time using complex numbers. In the figure is the right enumerative
path of an EAPP. On the right of each link is the digital watch that ticks at each corner, keeping parallel to
the oriented path. The association with complex numbers is that if the watch hand is a unimodular complex
number, each tick represents multiplication by i

Combining (3), (4) and (5) we get

t'= tio. 6)
V1 =22

Thus the requirement that the EAPP area be invariant under a change of inertial frames
forces the appropriate Lorentz transformation. To allow arbitrarily small velocity changes,
the orientation of the area must also be preserved. A sketch of a few EAPPs with the resulting
oriented areas appears in Fig. 2(a).

The ensemble of crossing points provides a sketch of a grid in Minkowski space. For
example the locus of points of first crossings of all our particles of arbitrary v consists of
the locus of all points whose time-like distance from the origin Fig. 2. Our world-chains
accommodate the Lorentz transformation through the imposition of the local and frame in-
dependent requirement that the Euclidean area of our chains be preserved. The ensemble of
EAPPs also partitions spacetime into regions of positive and negative orientation, a feature
that is not apparent in the smooth-worldline paradigm! The extra feature of orientation of
areas means that the entire ensemble of free particle paths agree on the orientation of space-
time areas within the future light cone of the origin. This is illustrated in Fig. 2(a) through
the alternate shading of areas of positive and negative orientation.

The crossing points and corners of the EAPPs can be thought of as the ticks of an intrinsic
clock carried by the particle. In Fig. 2(b) we see that the basic repeating unit of two areas
has four possible paths from bottom to top corresponding to two possibilities for the bottom
two links and two possibilities for the top two. The two paths that maintain colour and
direction in the figure have two corners. The two outer boundaries that change colour at
the crossing point each contain three corners. The principal of maximal ageing suggests
that these two, of the four possible, should count the proper time of the particle. We call
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these paths ‘enumerative’ for their role in counting proper time and they form our analog
of ‘world-line’. The right hand boundary of a chain has links with directions that rotate
counterclockwise with period four. This useful feature can be used as a clock.

The proper time of an EAPP differs from the usual proper time of special relativity in
that it is digital. To distinguish it from conventional proper time we shall borrow the expres-
sion wristwatch time [5] to remind us that it is carried with the particle. As we shall see,
the interval between ticks is determined by the mass of the particle, the clock itself being
encoded in the spacetime geometry of the enumerative path. To see this we look at the twin
paradox for EAPPs since it illustrates an important feature that does not appear explicitly in
the usual formulation of special relativity.

In Fig. 3(a) two chains are compared. The chain representing the inertial twin is at rest
in the lab frame, the rocket twin moves at speed v = 3/5 out to the point x = 3 and back
to the origin. As expected the wristwatch time of the rocket twin is 8 compared to 10 in
the rest frame. This is evident by just counting time as units of area in the two chains.
A feature that will be important later can be seen in the figure. Where the world lines cross at
t = 10, the chains have an overlapping area. The areas of overlap have the same orientation.
However orientation is clearly path dependent and paths that cross may intersect with areas
of opposite orientation. This is the precursor of phase in this model. Any two non-identical
paths between two points in spacetime will in general give different wristwatch times and
different orientations at the end point.

EAPPs clearly have an internal structure that digitally counts their wristwatch time. This
is a feature that is very useful and worth exploring. It lies at the heart of the ubiquitous
presence of complex numbers in quantum propagation, and the odd signature of spacetime
in this model.

Along a world chain, the wristwatch ticks at each corner of the right-hand boundary, and
a complex number may be used to represent a vector that stays parallel to the oriented right-
hand boundary of the EAPP Fig. 2(b). The association of complex numbers with the four
directions of oriented areas allows us to associate i with every tick of the clock (Fig. 3(b)).
That is, if our digital watch is a unimodular complex number, multiplication by i effects
a ‘tick’. A tick corresponds to multiplication by i. The argument of ¢® counts the ticks in
units of . Real or imaginary determines right or left moving in the enumerative path.

This is illustrated in Fig. 3(b) for the first part of the rocket twin path where each link
is assigned one of the fourth roots of unity. Let us use the unit imaginary and the corners
in the paths to count time for the twins. For the inertial twin the right enumerative path
from (x,t) = (0%,0%) to (0F, 10%) has 20 corners resulting in i>° for a proper time of
10 (i = ¢'%7"), an orientation of 41 ( i?® = 1) and a final enumerative direction along
the right light cone (i?° is real and positive). Similarly the rocket twin has a path with 16
corners for a proper time of 8 with a final orientation as for the inertial twin. The ultimate
reason that complex numbers are implicated in the counting process here is the fact that we
are dealing with oriented areas rather than the smooth curves of conventional world-lines.
The oriented areas have orientation %1 so the counting process involved in the statistical
mechanics involves a periodic use of subtraction as well as addition. The translation of this
counting from area to length through a square root then invokes the unit imaginary. The rule
itself (“associate i with every corner in the path”) is Feynman’s corner rule and will reappear
later in association with his Chessboard Model [6].

Thus far EAPPs fulfill the kinematic requirements of special relativity on scales greater
than the chainlink size. The area preserved is the product of the projections of the enclosed
area onto the light-cone boundaries. For free particles, the crossing-point ticks are deter-
mined by two fixed frequencies, one on each of the cones. An EAPP always sees these two
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(a) The Twin Paradox. (b) Digital Time.

Fig. 3 (a) The “Twin Paradox’ with a reflected EAPP. A chain of oriented areas ‘at rest’ at the origin repre-
sents the inertial twin in its rest frame. The rocket twin moving at speed 3/5 the speed of light is represented
by a chain that is reflected back at the spacetime point (x,#) = (3, 5) in the lab frame. The moving EAPP’s
wrist watch time is 8 compared to the inertial time of 10. (b) Counting corners in the twin paradox example.
Associating the unit imaginary with every corner in a path keeps track of the number of ticks of the clock
as the argument of the exponential e’ . As we progress along the right enumerative path of the rocket twin
the digital clock ticks at the corners as {eo, ein/ 2, e3in/ 2, ...}. The rule of i for every corner of the path will
appear later when we consider the Dirac equation

frequencies as equal on his wristwatch. An observer in a lab frame moving with respect to
the EAPP will see two different frequencies (Fig. 4). The moving observer needs both of
these frequencies to track the motion of the EAPP in his reference frame. The two frequen-
cies correspond to digital signals that oscillate independently along the light cones between
plus and minus one. Comparing these oscillations to simple harmonic oscillators we would
expect energies proportional to the frequencies so we write

E=h(vg +vp), @)

where & is some fixed positive constant and the v are the frequencies on the two light cones.
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Fig.4 The right-enumerative path of an EAPP moving at constant speed. The frequency of direction changes
on the left and right light cones depends on the macroscopic velocity of the particle. If the particle is at rest the
two frequencies are the same. If the particle is moving the two frequencies differ. The right part of the figure
expands the first half link, comparing it to the same link in the frame of the particle. The two frequencies vg
and vy, have corresponding wavelengths tg and t; =1’ — tp respectively

As frequencies, v, and v; are just inversely proportional to the lengths of the zigs and
zags. Referring to Fig. 4 and (4), (5) and (6) we have:

1 I 1 4t Vo )
V=— — = = =Y.
o Pl—v) Jice T
Our proposed energy is then
1 2
E =hyvy =~ hyy + Ehvov )

the latter being the case in the event that v < 1. If we identify the EAPP rest mass with
m = hvy, (8) gives the correct velocity dependence of the relativistic mass. Similarly if we
write p = myv we get the required E> = m? + p°.

These arguments show that the oriented area construction is sufficient to have EAPPs
behave on large scales as if they were massive particles moving in Minkowski space. In the
next section we consider more closely the effect of orientation on fine scales.

3 Sum Over Paths

When discussing the twin paradox of Fig. 3(a) we noted that orientation is path-dependent
and is a function of the particle’s wristwatch time. From Fig. 2(b) it is apparent that a conve-
nient measure of orientation is a complex number that gives us a digital readout of the path’s
wristwatch time. From Fig. 3(b) it is clear that along any given path, starting at the origin,
the orientation at the end of the path will be i ® where R is both the number of corners in the
path and the number of ticks of the particle’s wristwatch.

Let us now introduce a stochastic element. Consider a lattice with spacing € < ) where
1o is the first crossing point of our free particle EAPP. We generate a stochastic EAPP in
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the following way. We always step along diagonals on the lattice in the positive ¢ direction.
At each step we usually maintain our current direction but occasionally switch direction
introducing a corner in the path, with probability em <« 1. Such paths look just like our
enumerative paths except the individual links ultimately have lengths governed by the expo-
nential distribution. Now consider the following sum:

Kb, a,e)= ZN(R)(iem)R, (10)
R

where b is a positive timelike distance from a. The sum here is over all the stochastic
‘Chessboard-like’ paths between a and b. The paths are partitioned with respect to the num-
ber of corners R in each path. In terms of EAPPs, R is the wristwatch time along the path,
i® gives the orientation at the end of the path and (em)® is proportional to the probability
that a particular path has R corners. Clearly, all R-paths have the same wristwatch time and
consequently the same digital watch state. There are only four such states, but the sum over
R will mix them as linear combinations of the four complex numbers. The result will be
another complex number that will interpolate between the original set of four watch-ticks.
Equation (10) simply calculates an expected value of the orientation over all possible lattice
paths, the variation of orientation being a result of path dependent proper time!

The sum in (10) is in fact well known. It is the same sum as the Chessboard model due
to Feynman.? In the limit as € — 0 it approaches the propagator for the Dirac Equation [7].
The formulation in (10) is Feynman’s version of the sum-over-paths for a relativistic particle
in two dimensions.

Formula (10) is usually the starting point for a demonstration of the path integral formu-
lation for the Dirac Equation [7-9], the relation to Kac’s model of the telegraph equations
through analytic continuation [10], the interpretation of world chains as a single path [11—
13] or an exploration and development of discrete physics [14]. It is a formula with a small
but noticeable place in the history of quantum mechanics if for no other reason that it pro-
vided a guide to Feynman’s thinking [15]. In all these contexts Feynman’s rule of ‘i for
every corner of the path’ appears as a feature that eventually ties the model into the Dirac
equation. The difference here is that we have arrived at (10) as a stochastic variant of a model
that requires massive particles to preserve Lorentz covariance through local geometry. After
the continuum limit the sum has a conventional interpretation as a formula for a free particle
in Minkowski space after quantization. Prior to the continuum limit the paths themselves
and the method of counting are nothing more than a stochastic version of EAPPs. The local
rule for preserving Lorentz covariance for a massive particle has done more than initially
requested, it has given us Lorentz covariance and quantum propagation.

Two for the price of one is economical, but it also suggests the possibility that attempted
marriages of relativity and quantum mechanics may miss-interpret a feature that they share.
For example, consider forming the sum in (10) in the limit as € — 0. We get, in the non-
relativistic approximation v < 1, in conventional units, [6].

. _ —1/2 . )2
K(b,a):exp[—imcz(tb—tﬂ/h]((W) exp%) (11)

We can now read this formula simply in terms of EAPPS. The product of the exponentials
is just the expected orientation based on wristwatch time over the ensemble of paths us-
ing the approximation (1 — v?)!/2 &~ 1 — v2/2. In the conventional picture the formula is

3Reference [6] problem 2.6.
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just Feynman’s non-relativistic kernel multiplied by a very rapidly varying rest mass term
that acts like a carrier wave. When we remove the rest mass term, the remainder obeys the
Schroedinger equation. From the perspective of EAPPS, Schroedinger’s equation acquires
its form as a diffusion equation with an imaginary diffusion constant as an inheritance from
Lorentz covariance and the resulting path dependent proper time! We do not find ¢ explic-
itly in the Schroedinger equation simply because it drops out in the first order term in the
small v expansion of my c?. However the inheritance of phase from proper time is clear and
unequivocal.

From the EAPP point of view, the non-relativistic path integral also makes perfect sense.
The usual Feynman kernel, in brackets in (11) is essentially the usual Gaussian kernel of
the Wiener process that one would get from the Kac model of diffusion [16, 17], except the
corner weight of 1 in the Kac model is replaced by i fo count the proper time of the path.
The path-dependent phase of Feynman paths in the non-relativistic path integral implements
the path-dependent proper time of EAPPS in the non-relativistic approximation!

4 Discussion

The Chessboard model was developed by Feynman in a period when he was trying to un-
derstand the Dirac equation from as many points of view as possible. Regarding this process
he commented to his friend T.A. Welton [18]:

The power of mathematics is terrifying—and too many physicists, finding they have
correct equations without understanding them, have been so terrified they give up
trying to understand them. I want to go back & try to understand them. What do I
mean by understanding? Nothing deep or accurate—just to be able to see some of the
qualitative consequences of the equations by some method other than solving them in
detail.

This article takes this view with the Chessboard model itself. In conventional approaches
to relativistic quantum mechanics one inherits a picture of Minkowski spacetime from clas-
sical physics. This picture for free particles is scale independent and assumes that worldlines
are smooth and free of mass-dependent geometry. One modifies the picture to encompass
wave propagation by replacing dynamical variables by differential operators. The prescrip-
tion works for the Dirac equation, but it is a marriage of two different pictures, both based
on the idealization of a smooth featureless continuum.

By comparison, the EAPP route to the Dirac equation in two dimensions is transpar-
ent and displays an intimate relationship between special relativity and quantum propaga-
tion. By building fine-scale mass-dependent geometry into worldlines by a local rule that
preserves a Euclidean area associated with the worldline, we imitated the behaviour of a
classical particle embedded in Minkowski spacetime on coarse scales. In doing so we dis-
covered Feynman’s corner rule for counting proper time and its connection to oriented ar-
eas. By examining the twin paradox we noticed that path-dependent proper time implied
path-dependent orientation. A sum-over-paths of a particle’s wristwatch time was then im-
mediately recognizable as the chessboard model.

There are several interesting features in this route to the Dirac equation.

— Mimicking Minkowski space through preservation of spacetime area builds the feature
(oriented area) that manifests itself in quantum propagation. An invocation of Minkowski
space at the beginning of the calculation would have hidden this feature beneath a smooth-
ness assumption.
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— The path-dependent phase of wavefunctions is a manifestation of path-dependent proper

time. This is the case for both the Dirac and Schroedinger equations.

The odd signature of spacetime in special relativity and the ubiquitous implication of
complex numbers in non-relativistic quantum mechanics both arise from the same source.
The source is the signed area metric that is built into an EAPP as a local rule, namely:

(As)? = £((A1)? — (Ax)?) (12)

On large scales this is the source of the odd signature of the conventional Minkowski
metric where one chooses the sign according to whether events are spacelike or timelike
separated. On small scales the EAPP construction uses null links implicating both signs
in the area metric and the unit imaginary in the length metric.

Given the restricted context of this model to a two dimensional spacetime, there can be

two contrasting speculations about the generality of this picture.

1.

The EAPP picture is an artifact of two dimensions made possible by the fact that there are
only four possible directions in spacetime. In a four dimensional spacetime the simplicity
of only four directions is lost, making the situation more complicated and removing the
common connection. This is reflected in the lack of any consensus on an extension of the
Chessboard model to four dimensions.

. The EAPP picture is likely to be more general than the 2D model. The arguments that

motivate the model do not depend on dimension. The result of the model is that the path
dependence of the proper time of special relativity manifests itself as the path dependent
phase of quantum mechanics. Since proper time itself is a Lorentz scalar the result may
be expected to carry over to four dimensions by a simple embedding.

We cannot resolve these contrasting possibilities here although the author favours the sec-
ond conclusion and will publish an extension of the Chessboard model to four dimensions
featuring oriented areas in due course.

There is a fairly extensive literature on Zittebewegung in the Dirac equation with opinions

on the phenomenon varying from considering it an artifact and a distraction, to being a
phenomenon central to quantum mechanics [19]. This model sides strongly with the latter
view in that the EAPP is a specific model of Zitterbewegung in two dimensions.
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